

GIS Modeling and Analytics in Regional Planning

Toolbox

Tuesday

May 16, 2023

WWW.SCAG.CA.GOV

Housekeeping

- 1. Meeting length: 1.5 hour
- 2. This meeting is being recorded
- 3. All participant lines will be muted
- 4. At the end, there will be a Q&A session
- 5. If you have a question during the presentation, please type it into the chat box or press the "raise hand" function
- 6. We will log all questions and then voice a selection at the end of the presentation
- 7. A recording of this webinar and the PowerPoint slides will be available on the SCAG website. We will send a link to everyone who has registered after the event

Agenda

- 1. SCAG Regional Planning
- 2. GIS for Regional Planning
- 3. GIS Modeling & Analytics
- 4. Demo: GIS Programming & Automation
- 5. Q&A

1:00 – 1:10 p.m. 1:10 – 1:20 p.m. 1:20 – 1:40 p.m. 1:40 – 2:00 p.m. 2:00 – 2:15 p.m.

SCAG REGIONAL PLANNING

SCAG Regional Planning

About SCAG

SCAG REGION STATISTICS

HOUSING DATA SOURCE: 2020 data are from the 2020 Decennial Census PL-94 redistricting file which has been processed by the California Department of Finance, 2021 data are Esri estimates (additional information on Esri demographics can be found at https://doc.arcgis.com/en/esri-demographics/latest/regional-data/united-states.htm). RHNA information are from SCAG. For additional housing data for SCAG jurisdictions, please refer to the Pre-certified Local Housing Data Reports (https://scag.ca.gov/housing-elements) developed for 6th cycle housing element updates.

EMPLOYMENT DATA SOURCE: 2021 data are Esri estimates (additional information on Esri demographics can be found at https://doc.arcgis.com/en/esri-demographics/latest/regional-data/united-states.htm) Specific information on the categorization of White Collar, Blue Collar, and Services employees can be found at https://doc.arcgis.com/en/esii-demographics/latest/reference/faq.htm#anchor15, along with additional information on Daytime population counts at https://doc.arcgis.com/en/esri-demographics/latest/reference/faq.htm#anchor14. 2019 data are from the American Community Survey (ACS) and have been processed and published by Esri.

BUSINESS 790k 2021 TOTAL BUSINESS ESTABLISHMENTS

7.7 M 2021 TOTAL EMPLOYEES

8.4M

2021 WORKERS

10.4м

91%

AGE 16+

2021 RESIDENTS

2021 EMPLOYED

CIVILIAN POPULATION

DAYTIME POPULATION

53% 2021 OWNER OCCUPIED HOUSING UNITS

24.7M

TOTAL ACRES

HOUSING

FINAL 6TH CYCLE REGIONAL HOUSING NEEDS ASSESSMENT (RHNA) ALLOCATION

1.341.827 HOUSING

223,957

The Region Faces Big Challenges...

Regional Planning Context

Planning, Engagement & Data Sharing

43% had no in-house GIS support

- Struggle to update <u>local</u> General Plan
- Need data, tools, resources, and support
- Struggle to do <u>regional</u> forecasting & planning
- Need accurate, complete, and current local data

shared data through email or other means of direct communication

Connect SoCal?

- 20+ year plan with 6,000+ transportation projects, regional development pattern and goal-oriented programs and strategies.
 - Mobility, Environmental, Community, and Economic Goals
 - Reduce congestion and travel times
 - Increase opportunities to walk, bike or take transit
 - Reduce greenhouse gas emissions and other pollutants
 - Conserve open space and farmland
 - Improve access to transit and jobs and meet regional housing needs
 - Support new jobs, improved competitiveness
 - Facilitate efficient and resilient goods movement

Local Data Exchange

Solicit updates and corrections to:

- 1. Local land use data
- 2. Preliminary forecast of households and employment growth

Feedback and editing opportunity on: Additional growth and transportation data

Opportunity to align local and regional visions

GIS FOR REGIONAL PLANNING

GIS and Planning

GIS: More than just a map

Data management

Visualization

Analysis & modeling

Sharing & engagement

Regional Data Platform (RDP)

Planning & Engagement Tools

Data Sharing Tools & Workflows

Local Data Exchange (LDX) Web

LDX Workflow Management

Data/Map Books

- Producing Data/Map Books of 197 local jurisdictions for Connect SoCal Local Data Exchange (LDX) process
- To help local planners better understand the sources, methodologies, and contexts of SCAG GIS datasets
- Including 30+ maps of:
 - Land Use
 - Priority Development
 - Transportation
 - Green Region Resource Areas
 - Geographical Boundaries
 - Growth Forecasts

Geospatial Data for Connect SoCal

- Smart Land Information System
 - Regional land use information at the parcel-level for 6 counties and 191 cities (app. 5 million parcels)
 - Major land use information: General plan, specific plan, zoning and existing land use
 - Quadrennial and Annual Land Use dataset
 - Other value-added land information
- Growth strategy analysis
 - Priority Development Areas, Neighborhood Mobility Areas, Job Centers, High Quality Transit Ares, Transit Priority Areas, etc.
- Resource areas (e.g., open space, farmland, etc.)
- Transportation (e.g., truck routes, bikeways, etc.)

SCAG GIS MODELING & ANALYTICS

GIS and Programming

- Data Analysis and Data Manipulation
 - Customize available geospatial tools and libraries to facilitate GIS work

- Workflow Automation
 - Streamline the workflow
 - Reduce repeat work

- Easy User Interface
 - Develop easy to use tool for everyone

SCAG GIS Modeling and Analytics

- Developing an effective GIS workflow to streamline:
 - High-volume regional geospatial data development
 - Repetitive and complicated geoprocessing
 - Redundant map book compilation and production tasks
- Utilizing ArcGIS and programming skills to develop workflow automation that offers benefits in
 - Time and labor savings
 - Better data quality, accuracy and consistency

GIS Programming for Geospatial Data Development

- High-volume parcel data processing
 - To manipulate over 5.6 MM property characteristics and app. 5 MM parcel polygon features
 - Obtained from multiple sources
- GIS programming for parcel data management
 - To streamline repetitive and complicated data manipulation and standardization process of highvolume parcel data,
 - To convert local land use codes into SCAG's standardized land use classification
 - To ensure data consistency and accuracy (e.g. duplicate/null record clean-up, feature comparison, spatial match, etc.)

ntyFC = "P:/=existing landuse 2016/shapes/LandUse poly scag.gdb/LandUse poly " + cnty ityFC = "P:/=existing_landuse_2016/shapes/LandUse_poly_" + cnty + ".gdb/" + cityName

int the totel number of features in file geodatabase intRow = arcpy.GetCount_management(cityFC)

aver from the feature class arcpy.MakeFeatureLayer_management(cntyFC, "gdb_cnty") arcpy.MakeFeatureLayer_management(cityFC, "gdb_city")

Join the file geodatabase with dbf file by SCAGUID print "----- Start join process -----'
print "Input file: " + cityFC
print "Target file: " + cntyFC

ioinField = "SCAGUIDIG rcpy.AddJoin_management("gdb_cnty", joinField, "gdb_city", joinField)

rint "===== Start update process ====="

Select joined features and update values expression = '"' + cityName + ".SCAGUID16" + '"' + " IS NOT NULL" arcpy.SelectLayerByAttribute_management("gdb_cnty", "NEW_SELECTION", expression)

ount the selected feature cntSelect = arcpy.GetCount_management("gdb_cnty")

arcpy.CalculateField management("gdb cnty", "LandUse poly " + cnty + ".LU16", "!" + cityName + ".LU16!", "PYTHON 9. rcpv.CalculateField manage t("gdb cnty", "LandUse poly " + cnty + ".NOTES",

print "Updated: NOTES arcny CalculateField management(print "Updated: LU16 2ND

rcpy.CalculateField_management("gdb_cnty", "LandUse_poly_" + cnty + int "Updated: RATIO 2N

arcgis.features import GeoAccessor t numpy as np t arcpy

umm_path = r"P:\-specific_plan\-specific_plan_2019\tables\-Phase_II_QC\QC_SP_summary_city.xls: EPORT_TABLE = pd.read_excel(summ_path, sheet_name="summ")

PORT_TABLE("INDEX") - REPORT_TABLE("NIDEX").astype('string') PORT_TABLE("FLAN NAME") = REPORT_TABLE("FLAN NAME").astype('string') PORT_TABLE("FARCEL_OUT_BNDRX") - REPORT_TABLE("FARCEL_OUT_BNDRX").astype('string')

UNTY_global = ""

idx, row in REPORT_TABLE.iterrows(): COUNTY - row["COUNTY"] CITY = row["JURISDICTION"] CNTY = cnty_dict[COUNTY] CTTY = cTTY.replace(" ", "_") print(COUNTY, " ", CITY)

if COUNTY != COUNTY_global: REPORT_TABLE.to_excei(summ_path, sheet_name='summ', index=False) COUNTY_global = COUNTY

result = {| # 1. load city-level parcel and boundary data parcel = "frivepeotic_plan\"especific_plan_2019\shapes\Specificplan_poly_" + CNTY + ".gdb" + "\\" + CTTY boundary _ "fivepeotic_plan\"especific_plan\"especificplan_boundary_" + CNTY + ".gdb" + "\\" not arcpy.Exists (boundary) : result["INDEX"] = "Passed reml[["ANDKY] = "Hassed" reml[["ANDKH, MAME"] = "Passed" reml[["ANDKL, OUT BENER"] = "Passed" REFORT_TABLE.at[ids, "HINN BANE"] = remlt["HIAN_HAME"] REFORT_TABLE.at[ids, "FLAN_HAME"] = remlt["FARCEL_OUT_BNDRY"]

print (result)

out_folder = r"P:\Mengdi\ConnectSoC gdb = "QC_SP_poly_" + CNTY + ".gdb" itGDB = os.path.join(out_folder, gdb)

f not os.path.exists(outGDB): arcpy.CreateFileGDB_management(out_folder, qdb)

out feature = os.path.join(outGDB, CITY)

2. spatial join parcel and boundary (any parcel HAVE_THEIR_CENTER_IN the boundary, one to many match arcpy.env.workspace = gdb arcpy.env.overwriteOutput = Tru

arcpy.SpatialJoin_analysis(parcel, boundary, out feature, "JOIN_ONE_TO_MANY", "KEEP_ALL", "#", "HAVE THEIR CENTER IN")

GIS Programming for Spatial Analysis and Geoprocessing

- High-Quality Transit Area & Transit Priority Areas
 - Identifying the intersection of 2+ major bus routes with a frequency of service interval of 15 min. or less during the peak periods
 - Python scripts to counting stops within 500 ft buffer of over 8,000 intersections of high-quality bus routes and to calculate the angles of high-quality bus routes intersections
- Growth Strategy Analysis for Connect SoCal
 - Estimating households and employment growth in various land use strategies for different growth forecast scenarios
 - Python scripts to streamline repetitive process and to ensure consistent methodology

the intersection of the target buffer and selected hqtc routes bffr hatc int multi = "bffr hatc int multi" arcpy.Intersect_analysis([bffr_target, hqtc_angle], bffr_hqtc_int_multi, "ALL", "", "POINT") bffr hatc int = "bffr hatc int" arcpy.MultipartToSinglepart_management(bffr_hqtc_int_multi, bffr_hqtc_int) # Calculate the centroid x and y of intersection of buffer and hqtc arcpy.AddField_management(bffr_hqtc_int, "INT_X", "DOUBLE") arcpy.CalculateField_management(bffr_hqtc_int, "INT_X", "!SHAPE.CENTROID.X!", "PYTHON_9.3") arcpy.AddField management(bffr_hqtc_int, "INT_Y", "DOUBLE") arcpy.CalculateField_management(bffr_hqtc_int, "INT_Y", "!SHAPE.CENTROID.Y!", "PYTHON_9.3") bffr_hqtc_int_dissolve = "bffr_hqtc_int_dissolve" dissolveFields = ["ORIG FID", "POINT X", "POINT Y", "INT X", "INT Y"] arcpy.Dissolve_management(bffr_hqtc_int, bffr_hqtc_int_dissolve, dissolveFields) bffr_hqtc_pnt = "bffr_hqtc_pnt" arcpy.MultipartToSinglepart management(bffr hqtc int dissolve, bffr hqtc pnt) # Calculate the distance between centroids and intersection of buffer and hote arcpy.AddField management(bffr hqtc pnt, "DIST X", "DOUBLE")

arcpy.CalculateField_management(bffr_hqtc_pnt, "DIST_X", 'INT_XI-IPOINT_X!", "PYTHON_9.3") arcpy.CalculateField_management(bffr_hqtc_pnt, "DIST_Y", "DUULE") arcpy.CalculateField_management(bffr_hqtc_pnt, "DIST_Y", "INT_YI-!POINT_Y!", "PYTHON_9.3")

Calculate the angles of intersections

angList = []
with arcpy.ds.UpdateCursor(bffr_hqtc_pnt, ['POINT_X', 'POINT_Y', 'INT_X', 'INT_Y']) as cursor2:
 for row2 in cursor2:
 cent_x = row2[0]
 cent_y = row2[1]
 int_x = row2[2]
 int_y = row2[3]
 dist_x = cent_x - int_x
 dist_y = cent_y - int_y
 if dist_x < 0 and dist_y <= 0:
 angle = math.degrees(math.atan(abs(dist_y/dist_y))) + 270
 elif dist_x < 0 and tist_y > 0:
 angle = math.degrees(math.atan(abs(dist_x/dist_y))) + 270
 elif dist_y > 0 and dist_y > 0:
 angle = math.degrees(math.atan(abs(dist_x/dist_y))) + 270
 elif dist_y > 0 and dist_y > 0:
 angle = math.degrees(math.atan(abs(dist_x/dist_y))) + 270
 elif dist_y > 0 and dist_y > 0:
 angle = math.degrees(math.atan(abs(dist_x/dist_y))) + 270
 elif dist_y > 0 and dist_y > 0:
 angle = math.degrees(math.atan(abs(dist_x/dist_y))) + 270
 elif dist_y > 0 and dist_y > 0:
 dist_y > 0 and dist_y > 0;
 angle = math.degrees(math.atan(abs(dist_x/dist_y))) + 270
 elif dist_y > 0 and dist_y > 0;
 angle = math.degrees(math.atan(abs(dist_y/dist_y))) + 270
 elif dist_y > 0;
 dist_y = 0;
 dist_y > 0;
 dist_y > 0;
 dist_y = 0;

FINAL PLAN	AREA		GROWTH				SHARE OF TOTAL GROWTH			
	ACRES	%	HO08 - HO16	HO16 - HO45	E08 - E16	E16 - E45	HO08 - HO16	HO16 - HO45	E08 - E16	E16 - E45
SCAG TOTAL	24,717,287		197,781	1,621,920	650,783	1,659,857				
Priority Growth Areas	975,234	3.9%	139,795	1,041,318	485,600	1,232,364	70.7%	64.2%	74.6%	74.2%
High Quality Transit Areas ¹	592,286	2.4%	115,013	830,905	294,289	997,212	58.2%	51.2%	45.2%	60.1%
Transit Priority Areas (TPA) ¹	218,411	0.9%	67,002	491,028	135,892	623,845	33.9%	30.3%	20.9%	37.6%
Job Centers	202,186	0.8%	47,816	390,688	217,165	502,749	24.2%	24.1%	33.4%	30.3%
Neighborhood Mobility Areas	248,916	1.0%	73,938	469,292	179,563	491,877	37.4%	28.9%	27.6%	29.6%
Livable Corridors ²	548,451	2.2%	98,024	748,306	350,001	826,170	49.6%	46.1%	53.8%	49.8%
Sphere of Influence ³	146,017	0.6%	5,846	71,956	16,790	29,478	3.0%	4.4%	2.6%	1.8%
Absolute Constrained Areas ⁴	20,487,984	82.9%	22,570	157,798	32,416	150,815	11.4%	9.7%	5.0%	9.1%
Variable Constrained Areas ⁵	17.924.688	72.5%	104,702	768,181	292.001	712.860	52.9%	47.4%	44.9%	42.9%

GIS Programming for Workflow Automation

Regional Data Platform Concerned Local Inputs

Consolidated Input Datasets

• ArcGIS Python API • ArcGIS REST API • ArcGIS Workflow Manager

• ArcGIS GeoAccessor – Spatial Enabled Pandas DataFrame Updated Regional Land Use Datasets

• Spatial Analysis Tool

• Data Migration Tool

• Quality Control Tool

Data Conversion Tool

Completed Regional Land Use Datasets

GIS Data and Correspondence Table Consistency Review Tool
Spatial Consistency Review Tool

GIS Programming for Data Visualization

Þ

Þ

Þ

Þ

Þ

Þ

Þ Þ

Þ

Þ

Þ

Þ

GRRA - Conservation

GRRA - Flood

GIS Programming for Data Visualization (cont.)

DEMO: GIS PROGRAMMING & AUTOMATION

Tell us how we did!

Take a quick 2-minute survey to help us improve future Toolbox Tuesdays!

